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Abstract 

Squares of  the adjacency matrices of  bipartite cycles (C u) can be block-factored 
into matrices x~hich correspond to vertex-weighted complete  graphs for u = 6, 
vertex-weighted strongly regular graphs for v = 8 and 10, and vertex-weighted 
metrically regular graphs for u > 10. Using this fact and some properties of  strongly 
and metrically regular graphs, it is shown that eigenvalues of  large bipartite C u 
graphs (i.e. large even annulenes) can be expressed by the general formula 

-+ v~(2 ± xZ(2 -+ \ f ( . . .  -+ 4-(2 + rp)). . .  ), 

where u = 2 n x p ,  n is the number of  surd ( ~ )  signs required and p = 3 , 4  and 5, 
Hefe, ra, r 4 and r s are the eigenvalues of  the eomplete  graph Ka and thes t rongly  
regular graphs S 4 and S s , respectively, The procedure does not  require construction 
of characteristic polynomials for the determinat ion of eigenvalues, and brings out 
a common topological origin for the two-fold degeneracies observed in the eigen- 
value spectra of  all eren cycles and many odd eycles, 

1. Introduction 

Graph-theoretical aspects of  cyclic conjugated systems have been extensively 
studied [ 1 - 1 0 ] .  The first requirement in all such studies is the construction of a 
characteristic polynomial, for which several methods have been devised [ 1 1 - 2 2 ] .  In 
the present note, it is shown that eigenvalues of large cycles with an eren number of 
vertices can be expressed in terms of only three cycles: C3, C4, and C s . Of these, C 3 
is a complete graph (K3), C 4 and C s are strongly regular [23] graphs (S 4 and Ss) , 
and their eigenvalues are known from their properties. Thus, the construction of a 
characteristic polynomial is not necessary for obtaining the eigenvalues of large even 
Cv's. The analysis requires the concept of vertex-weighted graphs, which are used by 
chemical graph theorists in the treatment of heteroconjugated systems [ 2 4 - 2 6 ] .  
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Analytic expressions for eigenvalues and eigenvectors of many symmetric 
graphs (including annulenes) have been known since the thirties; a very good account 
of them has been given by Rouvray [27]. Accordingly, the sets of eigenvalues reported 
hefe are not ilew, but the alm is to make use of the spectral properties of complete 
(K 3) and strongly regular (S 4 and S s) graphs to obtaJn eigenvalues and some other 
grapl»spectral features of larger annulenes for the first time. 

2. S o m e  regular  graphs  and  the i r  e igenvalues  

A complete graph is one in which every two vertices are connected by a single 
edge. For such a graph (Kp) with p vertices, the eigenvalues [28] are p -  1 with 
multiplicity 1, and -1  with multiplicity p - 1. Thus, the cyclopropenyl cation has an 
equilateral triangle (K3) as its graph and its eigenvalues are 2 , - 1 , - 1 .  The white 
phosphorus molecule t~,  with a tetrahedral structure, has K4 as its molecular graph 
and eigenvalues 3, - 1 ,  - 1 ,  -1 .  

The concept of a strongly r«,~dar graph was introduced by Bose [23], 
and Cameron has given a good account of such graphs in [29]. A graph (@) of 
p vertices is said to be strongly regular if there exist k,/3 and/J such that: 

(i) each vertex has valency k, 

(ii) given any two distinct vertices u and w, the number of vertices adjacent to 
both v and w is/3 if u and ware  adjacent and tt otherwise. 

Among the Hückel annulenes, only cyclobutadiene, having a sqaure as the 
molecular graph (k = 2,/3 = 0,/x = 2) and the cyclopentadienyl anion, having a 
regular pentagon as the molecular graph (k = 2,/3 = 0, tt = 1), are strongly regular. 
According to the "integrality condition" [18], the eigenvalues of such graphs are k 

t 
and ;2 [/3 - ~ -+ \F[(/3 - fr) 2 + 4(k - / J ) ]  ] • thelatter two roots r and s, correspondingto 
the "+" and " - "  signs, respectively, have multiplicities f and g, respectively, such 
that 

f + g  = p - 1 and k +¢)" +gs = 0, (1) 

where p is the number of vertices. Thus, the eigenvalues of cyclobutadiene ($4) are 
2 0 0 , - v  and those of the cyclopentadienyl anion (Ss) are "~ - * ( 1  + ~/5), 

1 l ( ~ r 5  _ 1)" --{(1 + ~5), ~( V 5 -  1), 
A connected graph is said to be meO'ically regular [29] if there are integers 

p~ such that whenever u and w are vertices at distance k, the number of vertices at 
U 

distance i from u and / from w is equal to pg. Thus, all Hückel annulenes (having C n 
graphs) with at least six conjugated carbon atoms have metrically regular graphs. For 
example, in benzene, P~l = 2, p l  = 1 etc 

2 3  , " 
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3. B l o c k - f a c t o r i s a t i o n  o f  b i p a r t i t e  graphs  and regu la r i ty  o f  the  f a c t o r s  

fo r  cyc les  

The formal study of  bipartite graphs originated in a chemical context when 
Coulson and Rushbrooke proved their famous pairing theorem [30]. The vertices 
of such graphs can be marked with asterisks alternatively. If the unstarred vertices 
are labelled 1,2, . . . and the starred ones 1", 2* . . . .  etc., the adjacency matrix (A) 
of  the graph has the form: 

A = 

B t 

where Ô is the null matrix ofadequate size and B t is the transpose of B. The occurrence 
of null matrices is a result of the fact that no two vertices of the same set (starred or 
unstarred) are connected. Now, the square of the matrix A will be block-factored as 

A2:I~l R2ô] 
The (Ü) element of A Œ is the number of walks oflength 2 from the ith vertex to the 
/ th  vertex. However, the distance from any starred vertex to any unstarred vertex is 
either 1 or greater than 2. This explains the appearance of the blocks of null matrices 
in A 2 The eigenvalues of A can be obtained from those of A 2 by utilizing the follow- 
ing well-known result of matrix algebra [31] : 

If • is any polynomial and if 13 is any eigenvalue of  the matrix A, then @(~) 
is an eigenvalue of the matrix ~ (A) .  

Thus, if +- VB be any two eigenvalues of A, then Az taust have eigenvalue /L 
It is convenient to follow the reverse way, since A 2 is block-factored and its eigen- 
values are those of the smaller matrices R ~ and R 2 . 

In the case of bipartite cycles, the factor matrices R~ and R 2 provide us with 
additional advantages: 

(1) Bipartite cycles taust have an even number of vertices so that there 
are equal numbers of starred and unstarred vertices. Hence, R~ and R 2 have 
equal numbers of eigenvalues. Again, A 2 and A have equal numbers of eigenvalues 
since they are of  the same size, but each eigenvalue of A 2 corresponds to two eigen- 
vales of  A. Also, the set of eigenvalues of A 2 is the combined set of eigenvalues of 
R 1 and R 2 (because of  block-factorisation). In fact, R~ = R 2 ,  and to obtain the 
eigenvalues of  A, one needs to find only those o f R  1 . 



2 8 2 A .K. MukheJjee, Eigen values o f  large eren ammlenes 

(2) Each vertex of a cycle is of degree 2. Hence, each diagonal element in R 1 
and R2 is 2. The alternate starring scheine also suggests that the number of walks of 
length 2 between any two distinct vertices of the same set (starred or unstarred) must 
be either 1 or 0. Thus, R 1 and R 2 are square matrices with 1 and 0 as oft-diagonal 
elements. From each of these, we can therefore construct a vertex-weighted graph, 
giving each vertex a weight 2. These derived graphs will, however, be unique only up 
to isomorphism but this will not affect the final evaluation of the eigenvalues. Table 1 
shows the factor matrix R~ obtained from A 2 for some bipartite Hückel annulenes. 

Table 1 

R~ derivcd from the squares of adjacency matrices of some bipart i te 
molecular graphs 

Moleculc 

Benzenc 

R 1 

1 2 1 = A(K 3) + 2I~ 

1 1 2 

I 2 1 0 1 1 
8-annulene 1 2 1 0 = A(S«) +2I~ 

0 1 2 1 

1 0 1 2 

I j 
2 1 0 0 1 

1 2 1 0 0 

10-annulcnc 0 1 2 1 0 = A(Ss) + 21~ 

0 0 1 2 1 

1 0 0 1 2 

In the matrices A(S 4) and A(S s), the vertices of S c and S s have becn enmnerated 
consecutively and not  al ternately.  

4. Determination of eigenvalues 

Benzene (C6/: The matrix R 1 for benzene is simply the adjacency matrix 
A(K3) of the complete graph K.~ corresponding to the cyclopropenyl cation, with 
each diagonal 0 being replaced by 2. Hence, R 1 in this case corresponds to a vertex- 
weighted complete graph and we find R1 = A ( K 3 ) +  213, where I 3 is the 3 x3 unit 
matrix. For a symmetric matrix B'= B + hI, the eigenvalues (/3') are those (13) of B, 
each raised by h units since the characteristic equation det(/3'I - B'  ) = 0 implies 
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det [(/3' - h ) I  - B] = O, 

giving / 3 ' - h  =/5. In the context of Hückel theory, this corresponds to a shifting 
of the zero of energy from c~ (the Coulomb integral of benzene carbon) to c~ + h. 
Thus, the eigenvalues of R,  are those of K3, each raised by 2 units, i.e. 4, 1, 1. Conse- 
quently, benzene has eigenvalues -+ 2, -+ 1, -+ 1. 

8- and 10-annulenes (C s and Clo): For 8-annulene, R~ is the adjacency 
matrix of cyclobutadiene, each diagonal 0 being raised by 2, i.e. R~ = A(S4) + 2&. 
By the same argument as before, the eigenv'~ues of R~ are those of S 4, each raised 
by 2. Thus, 8-annulene has eigenvalues +2, -+ ~~2, +- \[2, 0, 0. 

For 10-annulene, R 1 = A ( S  s ) + 2I s and the eigenvalues are -+2, ± ~[[(3 - \~5)/2], 
-+ \ / [ ( 3 -  ~r5)/2], -+ \?[(3 + \75)/2],  ± ~[[(3 + g5 ) /2 ] .  

12-annulene (C12): Here, R 1 = A ( C 6 ) + 2 / ~ ,  where A ( C  6) is the adjacency 
matrix of the metrically regular graph of benzene. The eigenvalues of R~ will, there- 
fore, be those of benzene (obtained earlier) raised by 2, and so 12-annulene has 
eigenvMues _+ 2, 0, 0, -+ ~~3, -+ ~;3, -+ 1, -+ 1. 

it is now clear that the process may be used recursively to obtain eigenvalues 
of  all the even annulenes. It does not require construction of characteristic poly- 
nomials. In constructing the adjacency matrices A(S4) , A(Ss )  , A(S6) from the 
graphs of cyclobutadiene, the cyclopentadienyl anion and benzene, respectively, 
the vertices have been enumerated consecutively and not alternately, in fact, it is easy 
to show that for any C~~ with an eigenvalue r~~, 

A 2 (C2n)  = l 
A(q,) + 2I,, ô ] , 

6 . 4 I G )  + :I, ,  

fröre which it immediately follows that 

r2ù : -+ }~(2 + , ) .  (2) 

For n = 3 ,4  and 5, the eigenvalues/;~ and their multiplicities are known from eq. (1). 
For larger even cycles, one can iterate eq. (2) until one ends with n = 3 ,4  or 5. Thus, 

r12, = ± V(2 + r6) = +- \ : (2 -+ \ : (2  + r3)). 

The eigenvalues obtained by the present procedure are in %11 agreement with 
those obtained from the general formula ,.» cos(27r//n), j = 1,- ,  ~ . . . ,il for Hückel 
tl-annulenes. 

The obtained results are summarized in table 2. It is clear from tlüs table 
that the eigenvalues of a cycle Cv, with v = 2 n x p (p = 3 ,4 ,  5) are obtainable from 
the general fommla 
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Table 2 

Eigenvalues of some even annulenes in terms of those of K 3, S c and S s 

Annulene Number of vertices Eigenvalues* 

Benzene 3 X21 ± \/[2 + r 3 ] 
12-annulene 3 X22 ± « [2  ± \F[2 ± ra] ] 

24-annulene 3 ×23 ± ~/-[2 -+ \/-[2 ± r.~ ]1 

8-annulene 4 ×21 ± \F[2 ± r4] 

16-annulene 4 ×2: ± \[[2 ± \F[2 ± r~ ]] 

32-annulerte 4 ×2 s ± \/-[2 ± \/-[2 ± \F[2 + r a ] ] ] 

10-anmilene 5 X2 ~ ± \/-[2 ± r s ] 

20-annulene 5 X2 ~- ± \/-[2 -~ \f[2 + r s]] 

r3, r 4 and r sare eigenvalues of K 3, S 4 and Ss, respectively. 

_+ \ ; [2 +_ \;[2_+ ~r[2 + . . .  + V~[2 + 9 1 ]  . . - ] ,  (3) 

where the number  of  surd signs ( \ ; )  required is n, and rp is an eigenvalue of  KB, & 

or S s according to whether  p = 3 , 4  or 5. 

The following impor tan t  inferences can be drawn flora the present  correlat ion 

of  large eren annulenes to KB, S 4 and S s : 

(a) These three special cycles show only twofold degeneracy in their 

spectra. Hence,  larger annulenes which can be correlated with them taust also show 

only twofold degeneracy in their eigenvalue spectra a wel l -known feature of  mono-  

cyclic conjugated hydrocarbons  on wlüch Hückel 's  (4n + 2) rule of  aromat ic i ty  is 
based [32 ,33 ] .  

(b) As the topological matr ix  is Hermit ian,  r2n taust  be real and f rom eq. (2) 

it immedia te ly  follows that  Ir n [ < 2 for any n. Thus,  for any cycle the largest eigen- 

value should not  exceed 2. This is also consistent with the "chromat ic  number  rule" 

for largest eigenvalues [34] ,  since annulenes are at mos t  triparti te.  

(C) The largest eigenvalue o f  K B, S 4 or S s is 2, and the recursive expression 
(3) shows that  for any even annulene the largest eigenvalue should be 2. 

In conclusion, we ment ion  that  the eigenvalues of  large cycles can be corre- 

lated with smaller ones in a variety o f  ways. Thus,  it is easy to show that for any C3n 
(with arbi trary integer n > 1) 

r3n = J~#h), (4) 

where f(a) is any one of  the roots  x of  the equat ion 
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x 3 - 3 x - a  = 0. (5) 

In this language, eq. (2) can be stated as 

r2ù = g(r~), 

where g(a) satisfies x 2 -  2 - a  = 0. In general, for a cycle Cm», the analogous 
equation is 

%,, = /~; ,07,) ,  

where F m (a) is any one of  the roots of  a suitable m-degree polynomial. However, the 
advantage with rn = 2, which has been used here, is that the quadratic equations 
can be solved by "radicals" and that Ph, which is to be substituted for a, is known 
from the special properties, e.g. completeness of C 3 and strong regularity of  C 4 and 

C s . 
Equations (4) and (5) are also very interesting. The roots of (5) are of  the form: 

1(« + ~[(a 2 _ 4))]1/3 + [½ ( a  + \f(a 2 - 4))] 1/3 x = S ( a )  = [ 

Hence, any odd annulene of size 3 n o r  3 n .  5 will inherit some characteristics of C 3 
and C s , respectively. For example, a = 2 gives r 9 = f ( r  3) = 2 as the largest eigenvalue 
of  (7 9 . Thus, recursively, all odd annulenes of the above two types will have 2 as the 
largest eigenvalue and the other eigenvalues will show only twofold degeneracy. 
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